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8UMMARY

A derivation is presented of a point-source method based on
the linearized theory foF cbtaining the pressure coefficient on
thin wings at supersonic speeds. The method is applied to oalcu-
late the lift distribution of a thin flat-plate wing having a
straight leading edge and an arbitrarily curved wing tip whose
elements are swept behind the Mach angle. A qualitative basis for
obtaining solutions that satisfy the Kutta-Joukuwski condition is
included.

The aalysis is continued to formulate the velooity potential
for regions influenced by so-called subsonic trailing edges (that
is, edges where the component of the free-stream velocity normal
to the trailing edge is subsonlo). The derivations include the
solution that satisfies the Kutta-Joukowski condition or any of
the infinite number of transition solutions involving a disconti-
nuity in the cross velocity (sideWash) in the wake of a subsonic
trailing edge. As an example, the two perturbation-velocity
components in the plane of a trapezoidal wing and the upwash over
the wing tip
mathematical
by arbitrary
Joukowski or
unique.

axe evaluated. By means of series expansions, the
nature of the lift distribution in regions influenced
subsonic trailing edges is indicated when the Kutta-
some other condition is applied to make the solution

.

, INTRODUCTION

The problem of determining the lift distribution of arbitrary
thin wings at supersonic speeds has been partly solved by use of
the linearized theory in references 1 and 2. h reference 1, the
point-source method of reference 3 is extended to include the
effective sources generated by the slopes of the streamlines in
the region between the wing boundaries smd the foremost Mach waves.

.
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The velocity potential and hence the aerodynamic coefficients in the
vicinity of wing tips at supermnio speeds can then be Calculated.
An explicit solution for the slopes of the streamlines in the
region included between the wing boundaries and the foremost Maoh
waves is presented in reference 2. This solution allows the methods
of reference 1 to be extended to include the calculation of the
velocity potential at points on the wing influenced by interacting
external flow fields.

In subsonic aerodynamic theory, an hafinite number of solutions
will satisfy the boundary conditions f’ora given wing. Some
criterion is then required to choose from the manifold of solutions
the one that is experienced in practice. A criterion that yields
theoretical results in approximate agreement with experiment is the
Kutta-Joukowskl condition. This condition requires that the stream-
lines leave the trailing edge of the airfoil smoothly (that is, that
the three components of the perturbation velocity are continuous
across the trailing-edge boundary).

When the flow is supersonic, the Kutta-Joukowski condition
need not be fulfilled at the trailing edge of the airfoil. 103al-
ized compression and expansion waves equalize the pressures from
the bott-omand top surfaces behind the trailing edge. Nevertheless,
beoause of the close similarity of supersonic and subsonic flaw
when the oomponent of the free-stream velocity normal to the
trailing edge is subsonic (the so-oalled subsonic-trailing edge),
a strong opinion among aerodynamicists is that the Kutta-Joukowski
condition will also approximately hold at supersonic speeds.

As Indicated in reference 2, the formulations of reference 1
may be extended to include solutions that satisfy the Kutta-
Joukowski oondition. The extension shows that in supersonic-flow
theory, as in subscmfc-flow theory, an infinity of solutions oan
exist for a given wing boundary. Some additional criterion is
then required. For subsonic leading edges, the added boundary
condition applied in reference 1 is that the perturbation-velocity
components shall be continuous in the region between the wing
boundary and the foremost Mach waves. The solutions so obtained do
not satisfy the l’Iutta-Joukowsklcondition for regions influenced
by subsonic trailing edges. If a discontinuity in the cross-
velocity component (sidewash in the plane of the wing) 1s per-
mitted (correspondingto the shedding of a vortex sheet), solu-
tions may be obtained that satisfy the Kutta-Joukowski condition
or any transition solution depending upon the assumed strength of
the discontinuity in the cross velocity. The particular
criterion to be used oan be determined only by experiment.
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A derivation based on linearized theory is presented in the
first part of this report to show that the theoretical pressure dis-
tribution on thin wings at supersonic speeds may be obtained from a
line integral and a surface integral. (A line source was applied in
reference 4 to obtain the pressure distribution at zero lift.) For
thin flat-plate wings or for the lift distribution on finite-
thiclmess wings, only line integrals are required. As an example,
the lift distribution is evaluated for a wing having a straight
le~ding edge intersected by an arbitrarily shaped curve whose
boundary-line elements are swept behind the Mach line from the
wing-tip and leading-edge intersection. The second part of the
report formulates the expressions for the velocity potential in
regions influenced by subsonic trailing edges.

Examples of these methods are presented. The solution satis-
fying the .Kutta-Joukowskicondition is derived for a swept trap-
ezoidal wing. SideWash and upwash velocities in the vicinity of
the wing tip are also calculated. As a further application, by
means of series expansions, the mathematical form of the lift dis-
tribution associated with the wake behind a general subsonic
trailing edge is indicated. When this result is combined with the
line integrals in the first part of the repofi~ e~ressions are
obtained for the lift distribution of arbitrary-plan-boundary
single wing tips at supersonic speeds. The Kutta-Joukowski and
other conditions are applied to formulate feasible solutions for
the various wing areas. The research was conducted at the NACA
Cleveland laboratory during August and September 1947.

ANALYSIS

Point-Source Method for Evaluating

Pressure Coefficient

A convenient approach toward evaluating the pressure coeffi-
cient on thin finite wings at supersonic speeds is to establish
the velocity potential. A point-source integral expression for
the velocity potential at any point on thin wings at supersonic
speeds is given in references 1 and 3 as

(1)
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where here
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perturbathn-velocity potential

free-stream velooity considered

slope of streamlties near x,y
planes

on top wing surface

parallel to x or t axis

plane measured in y = constant

Cartesian variables of integration, x and y directions,
respectively

Cartesian coordinates of point where cp is evaluated

r M -1
,

free-stream Mach number

(A complete list of symbols used in this report is presented in
appendix A.) In equation (1), the Integration of o is conducted
in the x,y plane for the disturbed flow field S included in th~
forward Mach cone from the point (X,Y)● For example, the integra-
tion for the wing shown in figure l(a) ie over the area ~. h
regions influenced by a wing tip, the disturbed flow area between
the wing boundary and the foremost Mach line must also be included.

If the velocity potential is cmnputed at a point–-(x+dx,y), as
in figure l(b), the -a enclosed by the curve efgc’ is the same
as the area abdc and the relation of the distances in the denomi-
nator of the integrand is the same as was considered at point (x,y).

The slopes, however, will have the value 0 +
% ‘x”

In addition,

the area a’bd’gfe will contribute to the velocity potential. The
value of w then becomes

3-(

JJ c1

where ~1 is the value of ~ along the
yields

(2)

f(x-g)wy-ll,z

leading edge. Integration !i



NACA TN No. 1585 5

.-

-.

where abd represents the path
equation (1) from equation (2a)

of integration. Subtraction of
gives

u--
JtJabd

where t and 0 are evaluated

(2a)

(3)

in the line integral as functions
of q along the line abd

—
offigure l(a).

The x component of the perturbation velocity may then be
computed as the surface integral of the rate of ohange of the stream-
line slopes with respect to ~ plus a line integral along the
foremost boundary of the disturbed flow field included in the
forward Mach cone from the point (~y~; .~~~ce integral, of
course, vanishes in regions where (Evaluation of

the surface integral along lines of discontinuous ~ results in

additional line integrals.)

For some problems, the integrations of equation (3) may be
more easily evaluated in a set of oblique coordinates (u,v) whose
axes lie parallel to the Mach lines. The transformation equations
are
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u = *( f.pq]

g =J?(v*)

% =*(X-W)

x. &%)

Inasmuch as the elemental area
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v .*(/+ M)

‘q=*(H)

~~ = &+PY)

Y = *(VW-Q
1

in the (u,v) coordinate system

..

●

(4)

is #udv, equation (3) may be

u J-ZIE
abd

c(dv-du)
(3a)

f(u#u) (vW-v)

where (uw,vw) ~orrespmds to the point (x,Y) and the evaluation
of the line integral,is agati conduoted al- the foremost Une of
disturbances inoluded in the forward Mach ocme.

When only one wing tip is imluded in the forward Mach cone
from the point, the surface integral over the area SD (fig. 2(a))
generated by the upwash over the wing tip may be replaoed by an
equivalent integration over a portion of the wing. This simplifi-
cation, which follows frcm the derivations of reference 1,
eliminates the necessity of evaluating the slopes of the streamlines
In the exbernal flow field ~. The velocity potential at point
(UWJVW) =thefi% offi~e z(a) ~S obta~~ed fr~reference 1 as

J

U rydudv
~: =-—

S/F==J~

u (ii (~#T) dudv
-—
MJl

JJsW,22
(5)

-.

--

--

..
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where ~ and ~T are the bottom- and top-surface wing slopes,
respectively.

Because evaluation of cp from equation (5) requires the applicat-
ion of separate sets of wing s opes In the respective regions ~,1
and &,2, the calculation of

$
will result in a line integral

along the divldlng boundary. Th~ derivation presented in appendix B
then yields equation (6).

-

a+’x=-

dudv

u

1,

lYT(dv-du) u

s

(~+@ (dv-du)

-w
(uW-u)(vW-v)

-m
ab bod 2 !/(%-u) (%-v)

2$ltJbd . z~

duz(vw)
where

dvw
is the derivative of the wing-boundary

atv= Vw.

(6)

curve ; = U2(V)

In order to obtain the lift distribution as a function of angle
of attack a, only the solution for a thin flat plate is required.
Because CB = ‘CT = a, only the two line integrals along the curves

ab and bd remain. The portion of the equation (6) that yields the
lift distribution is then
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(7)

If the equations of the wing boundaries (fig. 2(b)) on the two
branches separated by the origin are

v= VI(U) or

v = v2(u) or

equation (7) may be partly evaluated

r

denoted by

u= RI(V) _

U= U2(V)

t-o@eld “.

a-

(7a)

tip boundaries.

As an illustration of
on the top wing surface as

..

●

a
where VI is a function of U2(VW). The expression for 2
represented by equation (7a) 1s applied in the second part of’this
report to derive solutions for the lift distribution that satisfy
the Kutta-Joukowski condition for general-plan-fozm single-wlng-

will be calculated for the

equation (7a), the pressure coefficient
given by the relation

wing shown in figure 3.

(8)

.-

%
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Inasmuch as the leading edge and the wing tip satisfy the equa-
tions v = - klu and U = u2(v), the integral of equation (7a)
becomes

f

%2(v----)
Ua (l+kl)du “

‘-–’”-’F

Ua (kl+l)
-m

Uw ~(~-u)(vw+k~u) ~ ~
I

(9)

and

The value of Cp is then given as

-r

-.

.p=-,{~--] ~-+&&-l y“]
For comparison, equation (11) is also derived in appendix C as
tion (C4) by the method of reference 1.

Equation (11) shows that the pressure coefficient assumes
Ackeret value for a swept wing along the innermost Mach line from
the origin-(VV = O) and approaches infinity along the subsmic leading
edge of the wing tIp. The portion of the solution that gives the
infinity (that is, equation (10)) is generated by the l~e integral
along the Mach line bd in equation (7).

Y
is quantity is zero when

du2(Vw ~
the sweep on the wing tip is ~ or ~= . A change in sign

du2
— > 1 (regions influenced by subsonic trailing edges)

‘Ccus ‘hen dvw

(11)

equa-

the

in equation (10), which leads to a reversal of sign in the pressure
coefficient over a portion of the top wing surface. This pressure
reversal leads to lost lift and, because of trailing-edge suctiqto
decreased lift-drag ratio as cmnpared with the -solutionthat satisfies
the Kutta-Joukowski condition.

The pressure coefficient that satisfies the Kutta-JOtiOwski c~-
dition along the subsonic trailing edge must match the solution given
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in equation (11) along the mnstant-vw line evaluated by the
duz

relation —=1.
dvw The pressure coefficient must furthermore be

zero along the subecmio trailing edge. A function that meets both
of these requirements is

~t”-’ wZa (kl+l)
cP=-j% (12)

The wake from the subsonic trailing edge alters the lift distribu-
tion over a portion of the wing in such a manner that the discon-
tinuous term in equation (11) is canceled. b the second part of
this report, equation (12) is shown to be the correot solution for
the pressure coefficient in regions influenced by subsonic trailing
edges of a wing whose leading edge is straight (fig. 3) when the
Kutta-Joukowski condition is to apply.

Formulation of Velooity Potential Including Effects

Associated with Wake behind

Subsonic Trailing Edge

In order to clarify the present discussi~, a
the concepts presented in reference 1 is 5ncluded.

brief review of
The calculation

of the velocity potential at some petit on the surfaoe of thin wings
at supersonic speeds requires a knowledge of the streamline slopes
(O of equation (1)) included in the forward Mach cone from the
point. The slopes of the streamlines over the area %?(1+2)
(fig. 2(a)) are $zst the wing-section slopes. The_slopes of the
stre@ines in the region SD must then be calculated, either
implicitly or explicitly.

The slopes of the streamlines in the region SD may be evaluated
by assuming that a thin impemneable diaphragm coincides with a stream
sheet in the plane of the wing. This assumption does not alter the
flow over the wing. The diaphragm may then be regarded as an exten-
sion of the wing to isolate the top and bottom surfaces.

The coincidenc~ of the diaphra~ with a stream sheet requires
that no pressure difference exist between its top and bottom
surfaces. This ocmdition may be satisfied by requiring either that
the surface velocity potential be conttiuous h passing from the top
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g.
cc to the bottom surface of the diaphragm, as in reference 1, or that

the component of the perturbation velocity along the free-stream
direction (the x component) be continuous.

H the x component of the perturbation velocity (obtained by
differentiating the velocity potential) is equated on the top and
bottom surfaces of the diaphragm, the defining equation for the
slope A of the stream sheet ‘S; (fig. 4(a)~ is obtained as

lhtegration of equatim (13) yields

(LI Jr’,A(f,v)dtdn = (~+) d~d7
-: f(y)

SD (X-g)%z(y-q)z ~ (x-t)%2(Y-11)2

(14)

function f(y) that results frcm the partial inte@?ation isIf the
zero, the equation-&rived in reference 1 for-defining A- is
obtained.

A calculation of the velocity potential on the top surface of
the diaphragm for any value of the function f(y) may be made.
Again with reference to figure 4(a), the velocity potential becomes

u

JJ ,

Ad~drj--
Yc

‘?0
(x- Ij%?(y+)z

Substitution of equation (14) into equation (I-5)yields

ILu (a~+cf~)ahiq
v=-; + f(y)

‘%
2 (X-k)%z(y-?l)z

(15)

(16)



12 NACA TN NO. 1585

A similar calculation of the potential on the bottcm surface of the
diaphragm changes only the sign affixed to f(y). The function f(y)
thus represents one-half the difference in potential between the top
and bottcm surfaces of the diaphragm. In the case of thin plate
w~gsj OB+OT = O and f(y) is the potential on the top surface of
the diaphragm.

Despite a discontinuity in the velocity potential across the
diaphragm, the x and z components of the perturbation velocity
are continuous. This apparently contradictory state of’affairs may
be rationalized by the.preeence of a vortex sheet in the plane of
the wing. The strength of the vortex sheet may be chosen (by
controlling f(y)) to yield solutions for the velocity potential
that satisfy the Kutta-Joukowski condition for subsonic trailing
edges.

The function f(y) is related to the strength of the vortex
sheet. If no wing nor material ob~eot is intercepted (for the
values of y under ccnsideratipn) to generate a wake, the strength
of f(y) remains unaltered for all values of x.

In the equations that follow, two simplificationsare introduced:
(1) all the derivatims are conducted in the oblique coordinate
system, and (2) the derivations cansider mly thin flat-plate wings.”
Neither simplification decreases the generality of the soluticm.
The results for the actual wing at angle of attack may be evaluat~
as the sum of the results at zero angle of attack and the soluti&
at angle of attack for the thin flab-plate of the same plan form.

The extermal flow field may be divided into two parts (as in
fig. 4(b)), separated by the value of y thati-denotesthe ~unctim
between the leading and trailing edge. The foremost Mach line
originating on the leading edge generally represents a line of -
infinitesimal disturbance along which f(y) may be set equal to
zero. The function f(y) will remain zero for values of x that
do not intercept the wing. The veloclty potential (in the
z = O plane) is thus zero in the field ~,2. The field SD,I, on
the other hand, lies in the wake of the wing. ti this region, f(y)
will generally be other than zero (correspondingto the generation
of a vortex sheet) and may be evaluated along the wimg trailing
edge.

If the region SD ~ is temporarily considered as a portion of
the wing, the method 0$ referenoe 1 may be applied to evaluate the
potential on the top surface of the diaphragm ~,~ or o% the wing
surface. The virtual wing tip is then the y = constant line
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denoting the @nction between
much as f(y) is zero in the

the leading and trailing edges. Inas-
region E$3.2, the effeots of this

disturbed flow field may be evaluated b~’the methods of reference 1;
equation (5) applied to the virtual wing boundary will result. When
the flow fields are subdivided and renumbered, as on figure 4(c),
the contribution to the velocity potential of the disturbed
fields SD(2A+3) and %,2 is giveraby equation (5) as

because ~B = -T. Only the slopes of
regions ~,1 and %,1 need then be

potential thus becomes ,.

the streamlines in the
considered. The velocity *

Jf(y) =-&- -adudv

~. ~>

(17)

The origin of the coordinates for the wing of figure 4(d) is
placed at the Junction of the subsonic leading and trailing edges.
The wing boundaries are defined on the two sides of the origin by
the two sets of equations:

v= Vi(u) or u = ul(v)

v= V2(U) or u = U2(V)

(It will also be implicitly assumed that
du2
~> 1.)

the limits of integration into equation (17) yields

Insertion of

f(Y) = f(~) =- *
8

. u~

[f

V2(U) D-v

du -adv Adv
—+

r
uD-u

r vD-vvD VI(U) ‘ V2(U) 1i=
(18)
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By use of Abel’s solution (referenoe 2, 5, or 6), equation (18) maY
be inverted to yield

The velocity potential at points on the wing influenced by the
subsonio trailing edge (fig. 4(e)) is

(20)

-.

“-

The second member of equation (19) may replace the first member
along lines of constant ~ (or Vw) that extend across the wing.
Equation (20) then becomes

‘=f(yw)*[+Lf%uD1

(21)

Equation (21) gives the velocity potential on the wing in regions
influenced by subsonti-trailing edges. lhasmuch as

()v@q’j
f(y) = f ~ maY be arbitrarily chosenj it is aPParen* that ~

infinite ~umbe~ of solutions can satisfy the boundary conditions.
If f=O, equation (21) reduces to the result that would be
obtained by the methods of reference 1. On the other hand, if the :
Kutta-Joukowski condition is to apply, the function f may be so
chosen thatithe flow leaves the subsonic trailing edge smoothly.

. z
After the function f has been chosen, the second member of

equation (19) may be evaluated. The slopes of the streamlines h may
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then be calculated by use of Abel’s equatfon. These slopes in
general consist of two paxts,
equations

V2(U)

J

-adv

r
VD-V

VI(U)

and

fvD A.dv

h =~a+~b, which satisfy-the two

/-u

J v2(u) VD-V
‘JVD U-UD

I
Equation (22) has been evaluated in reference 2 to give

~b=~[~~-tan-l y=]

Equation
to give

(23) may be solved by Abel’s equation (reference

F
v-vD

15

(22)

(23)

(22a)

2, 5, or 6)

(23a)

In this manner, the slopes of the streamlines in the region ~ql
of figure 4(b) may be evaluated. If the region ~,1 is treated
as a portion of the wing, the slopes of the streamlines in the
region SD,2 may be evaluated from the equations of referenoe 2.

Examples of Solutions That Satisfy

Kutta-Joukowskl Condition

Swept trapezoidal wing. - AS a Stiple exaple, the theory of

the trapezoidal wing shown in figure 5 will be outlined. The leading
and trailing edges of the tip are defined by the equations
v = VI(U) = - klu and v = V2U . k2u, where kl> O and 0< k2< 1.
Beoause the-wing boundaries are straight lines, conioal flow will be
assumed.
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Because conical

by the wing tip, the

a function of y~x.

flow has been assumed in
a*mu*t

cross velocity ~

NAOATN NO. 1565

the region influenced

be either constant-or
& df

Because f is a ?unction on~Y of Y) & = ~

is constant in the region SD,I. The function f(y) is then-of the. .
form a. + aly where ao ad
must be zero along the line y
becomes

~g+~;~=.

Equatiti (21) then yields

a? are constants. Inalmmnchas f(y)
= & w is zero. l@ation (19) then

the velocity potential as

r% rvw

The two integrations indicated in
fmmulas 111 and 113 of reference

u

J

-—
m

vw/k2 *. J.:u& ‘2’)

equation (25)

+ (VW-UJt~-l

to give

2a~

F

l-kz

K ‘2

r]vw(l-k2)

k2uw-vw

may be evaluated by

r—

(26)

.

.

--

.-

(27)
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The potential Cp = Qa”+ ~ must assume the value aly along the
curve Vw = k2uw. Equation (25) (from equations (26) and (27))

meets this requirement. Moreover,
P must be equal to al along

the curve Vw = k2uw if the Kutta-Joytiowskicondition is to be
satisfied. Differentiation of equations (26) and (27) yields

~=~[-=EJk2+1)+2tm-1’28)

L

.-

r Vw i=_J(Mq) t=-l kl(kzw-vw)—+—
k2~-vw

v
kl

v..(k1+k2

(29)

al at Vw = k2uw gives

.=
al = (!-UCL —

f-kj

The cross velocity on the wing is then

(30)

fT1\

In a similar manner,

(32)

which is in agreement with equation (12) and with the results of
reference 8. W. D. Hayes of North American Aviatim, 13m.j has
obtained equation (32) from conical-flow relations.

Both the x and y components of the perturbation velocity
are continuous (equations (31) and (32)) across the subsonic trailing
edge, as required by the Kutta-Joukcwski condition. The upwash over
the wing tip is also continuous. I?5mmequation (22a),
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I&om equations (24) and (23a),

Evaluation of Aa and replacement of u and v by uD

respe~tively, gives

ITO*1585

(33)

and VD,

1
‘z-

Additim of ha

(35)

Equation (35) is valid o~ly in the region SD,I. of figure 5. AS
v approaches k2u, A from equation (35) approaches -a, as
required by the Kutta-Joukowski condition. The solution then satis-
fies the Kutta-Joukoweki condition in sll the perturbation-velocity
components even though only one of the components was applied to
evaluate the constant al.

The x and y cmnponents of the perturbatfcm velocity and the
slopes of the streamlines in the region ~,~ are plotted as a
funotion of Py/x in figures 6 to 8 for a wing on which kl = 2
and k2 = 0.5. The x and y c“mnponents(figs. 6 and 7) of the

(
perturbation velocity decrease as 13yx is changed f%om -1 (inner-
moet Mach line) to -1/3 (the wing tip . Both the x and y com-

-L<tis 0.ponents remain constant in the region s- x The streamline

.

.

..

.-

.

r
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slopes (fig. 8) are equal to -~ on the wing. The slopes change

from -m to +- in the region - ~ <g So. Similar values were

found by Lagerstrm in an Investigatim for the Douglas Airoraft Co.

Generalized wtruztip ● - For this example, a function f(y) that
can be e~anded in a power series may be chosen for the re@on SD,I .
of figure 4(b). The function f(y) may then be e~ressed as

Also, from

()f(y) =f=

al(vD-uD) + a2(vD-uD)2
=ao+ M ~2

+...

formula 750 of referenoe 7,

[*=* ‘- ()1 ~-uD.—
2 u-vD (’vlx3 ‘UD 2

‘ZZx

(36)

(37)

The integrad in the second member of equation (19) then becomes

*=@7J++%l@”D)
[

+ &&+2x4&]2 1(~-UD)2
[

a3 a2 al lx3 ao

— - 2M2(u-vD) ‘~ 2X4(U-VD)2+ ~3
.

ao lx3x5 1(V’D-UD)3 + ● ● ●

2X4X6(LI-VD)3
1

(38)



20 NACA TN NO ● 1585

Integration of equation (38) with respect to UD yields

J
u & [1

~
f(y)duQ al (u-v#

~ aO(u-vD)2 - ~ - & ~

F
u-uD

vD ~

[

a2 al 1X3 a. (u-VD)2
+ -1ipwFT+=~=-

7

[

as lx~ al 11X3)(5ao (U-VD)Z
- ~ - 2M2~~-VD) +

+*. .
2x4 M(u-vD)2 - 2X4X6(U-~)3 4

Equation (39)
the constants

r
‘f(y)duD

❑

.

(39)

may be slmplif~ed by collecting the coefficients of
% ~ al> % ) etc.:

.

(:ao (u-vD): 1+

JVD ~

1 I-X3 IX3X5—.
E

)
‘“2x4x3 + 2x4x6x4 + “ “ “

1 1X3 1X3X5
‘%% + 2x4x4

)
+ 2x4x6x5 + “ ● “

51

( I-X3 IX3X5~ (u-v# 3+* +
‘M?

2x4x5
)

‘-+””””

NOW by formulas 750 and 482

f-l

J X?-%ix 1—=ra%
o rI.-X

+

I’(n)r (*
=

(r n +-~

of

1 lx3 1X3X5
‘E ‘2x4x6+-+”=”

)

(40)

reference 7,

. . ..

+ ‘&- +“2x&&:+3f+-*--. .

(41)

. .

---

.
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Equation (40) then beccnnes

.-

-.

m

–Jti+l r(m+l) r (+
=z (-l)m ~ (U-VD) 2
m=o ‘(m+:) .

(42)

Partial differentiation of equation (42) with respect to u yields

rf(y)dUD ao

& ‘=—
T

‘uD 1

D (u-vD)Z

m

+-

2m-1 r(m+l) r +)
=

> (-lp ~ (U-VD) 2

(

(43)
rm+~

m=o

Equation (43) shows that either member of equation (19) is a funotion
only of the qu=tity u-vD.
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The portion of the velocity potential associated with the
function ‘f(y) is given from eauatim (21) as

Pa=*~(v”)*[&’’f(guD]

where Vw has replaced ~ inside the bracket, because
uD are variables ti the =ipUhtiCn. lh?oI.ufO~Uh 750
ence 7,

F

(44)

Only U and
of refer-

*=*[l++(-)+%(-Y+=&Y+*● ●

(45) -

Substituting equations (43) and (45) into (44), with Vw replacing
VD and U2(vw) shortened to u2, yields

-.

.-
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&

[1a(Jma=2( U2-V’)2
~

(uw-vJ~

~
+: (U2-VV)2

[

a.

3-
2(u@.)~

g

[

~ (U2-VW)2 ~ 80
‘5 —g

(U@#

23

.

~

+

t

; (uZ-vw)z ‘3= a.
2x4x6 7

(~-vw)~ 2X4(UW-VW)2

1

1

y

(M-vw)z

3.X3X5X2 %
5 F+”””

2X4X6(%-VW) z 1

--

(46)

of the constants 80, al, a2...

+*..

Collecting the coefficients
givee

,“
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3r

U2-V.

‘( )

2
.—
2X4X5 u~-vw

+*. .1

+. . . .

Rmn a comparison of each inf’:ite series

series expansion for (1-X2)- z (fom~
following equaticm may be deduoed:

+.0.

I

(46a)

of equatim (46a) with the

754 of referenoe 7), the

.-

.

:
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.

.

L

*2 d~

T1-82

-1L

[)2-VW 2

2x3x2x1 a3

J

+-VW
-—~ (~-vw)s S6 ds

*$x;
o 4=

+.. .

(where s is simply an integration variable) or

F“2 -Vw‘(n+l)r (~)~(~w-”w)n

s

Uw-v.

r (n++)MP
o

S& de

P -s
(46b)

(The integrals of equation (46b) may be expressed as incomplete
beta functions.)

Along the bound=y U2 = ~, the upper limit of the integra-

tions becomes unity and the values of the integrals are given by
formula 482 of reference 7 as

J
1

s% d~ r (-+$)r(+)
—=
F1-s2 21’(n+l)

o
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J-

b this spepial ease, then, qa reduces to

I’rcpa= Itz*(Vw-t+)n =?rf(y)
P

n=O

as Is required along the curve U7J*.

The portion of the x component of the perturbation velocity

associated with f(y) may be obtatied by partial differentiation

of equation (46b) to give

The series of equatim (47) 1s a funotion cmly of Vw. Alterations

of the fumtion f(y) for a given plan form cannot oh~e the factor

w=
When m arbitrary strength of vorticity is allowed, the x mmponent
of the perturbaticm velocity may be obtained by addition of equa-
tims (7a) and (47):

n=o (48)

or ‘

““-”d-.k&).!t?
w===

.

--

.

(48a)

z
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where g(vw) represents ~ times the braced portion of equation (48).

The function g(vw) depends on the shape of the wing-plan boundaries
(fig. 4(f)) and on the amount of vortici&in the wake of the sub-

sonic trailing edge.
()

The quantity 1- ~ w g(~w) is constant along

lines of constant VW.

If solutions that satisfy the Kutta-Joukowski oondition are
desired, the constants of equation (48) may be evaluated. Along the
subsonic trailing edge, the x component of the perturbation velocity
must be zero. The integral of equation (48) is zero along the boundary
because the llmits of integration then coincide. The Kutta-Joukowski
condition can then be satisfied only if

ma
Ti-

m

>

()(-l)nr(n+l)r * ~
VW-V1(U2(VW)) =

()

~ (u2-vw)n+ (49)
r n+

n=o

Equation (49) allows all the coefficients ~ to be chosen. Because
the first member is finite when U2 = VW) ao = O. The evaluation of

of the other coefficients may be stiplified by setting p = -“
Equation (49) then becomes

2
%F~=

m (-l)nr(n+l)r@ ~ pa-l

()

(49a)
r n+ I@

n=l

Equation (49a) is a power series in p, whose nth coefficient w
may be evaluated in terms of the (2n-l)th derivative about p = O.
Differentiation of the first member of equation (49a) may be
accomplished by successive applications of the relation

‘2F$R&

(50)

By application of equation (50) end L’Hospital’s rule to equa-
tion (49a), the coefficients al and a2~ for emple, have been
evaluated.

r

dvl du2
1
-~q

al = -Ua lim u2+vw+0 (51)
du2 ~
~-

.
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Mm U2+VW+0. (52)

The other coefficients
cients al, a2, . . .
velocity components in
of the equations previously presented.

may be similarly evaluated. Once the coeffi-
~ have been determined, all the perturbation-
the plane of the wing may be derived by means

A speoial case of equation (51) gives equation (30). The solu-
tion for the swept trapezoidal wing may thus be obtained from the
general equations that have been derived without the a priori assump-
tion that the flow is conical.

If mly functions derivable from the x component of the pertur-
bation velocity are requfred (such as pressure, lift, and drag coef’fi-
oients), equation (3), (6), (7), or (48) my be directly applied= me
solution for the~wing of f@ure 4(f) that satisfies
Joukowski condition may be obtained by substituting
equation (48) to yield

2= $., {-

the Kutta-
equation (49) in

(53)

For the special case of awing with a straight leading edge (fig. 3),
equations (53) and (8) give equation (12), which was previously
obtained by intuition.

A recapitulation
perturbation-velocity

RECAPITULATION

of the formulas for the x component of the
potential of a single thin flat-plate wing tip

..

.-

.
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with arbitrary plan boundaries is given herein. The
coefficient

formulas by

(a) In

~ L of thin wing tips may be obtained
the’relation

regions not influenced by the wing tip,

29

lift-distribution
from these

(from equation 3(a) and fig. l(a)).

(b) In regions Wluenoed by subsonic leading or trailing edges
when no vortex sheet exists directly behind the subsonic trailing
edge,

a Ua

$s

=—
x 2t%’c

ab

(from equation (7a) or (48) and fig. 2(b)).

(c) In regions influenced by subsonic trailing edges
Undetermined emount of vortlcfty is allowed in the vortex
behind the trailing edge,

, [1--lg(+2=%~b++ _

when an
sheet

(from equation (48a) and fig. 4(f) ).
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(d) In regions influenced by subsonic trailing edges when the
Kutta-Joukowski condition Is satisfied at the trailing edge,

‘=%~b a

(from equation (53) and fig. 4(f)).

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, January 12, 1948.

..

.-

“.

.-

..

8
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AFPENDIX A

SYMBOLS

The follbwing symbols are used in this report:

CP

~p,L

f(y)

d~w)

kl

kz

M

‘J n

coefficients of’power-series expansion of’
f(y) = ao + a~y +azy ?..

pressure coefficient on top wing surface

lift-distribution coefficient ( -2 Cn).

perturbation-velocity potential on top surface
of diaphra~ in wake of’so-called subsonic
traillng edge

undetermined function of Vw

constant greater than O

constant whose value lies between O and 1

free-stream Mach number

integer summation Indices

s

a

r

vUz-v-w

plan-form area

free-stream velocity

oblique coordinates whose axes lie parallel to
Mach lines

Cartesian coordinates

angle of attack

cotangent of free-strean Mach angle (4F1)

gamma function
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A

0

T

Subscripts:

1, 2, 5, . ● ●

a
.

b

B

D

T

w

Emamples:

cr~

Al

m

%?(1+2)

~

r(n+l)

%

h

!ll

slope of streamlines near
iny= constant planes
slopes)

IIACA~~0. 1585

z = O plane measured
(diaphragm-surface

slope of streamline (on wing slopes) with respect
toz= O plane measured in y = mnstant
planee

perturbation-velocitypotential on top wing
surface or diaphragm

numbered areas or curves

portion associated with f(y)

portion.not associated with f(y)

bottom (wing or diaphragm surface)

diaphragm

top .(wingor diaphragm surface)

wing

..

.-

slope on top wing surface

slope of diaphragm in plan-area 1
.-

perturbation-velocitypotential on top surface
of diaphragm

wing area 1 plus wing area 2

curve v = VI(U)

n!

portion of perturbation-velocitypotential on
wing surface associated with function f(y)

portion of diaphragp slope associated with
function f(y)

value of ~ along leading-edgeboundary curve 1

.
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APPENDIX B

..

“-

“DERIVATIONOF EQUATION (6) /

The velocity potential a% point (x,y) for the wing ttp of
figure 2(a) is given by equation (5) (written in Cartesian coordi-
nates) as

In terms of the areas bounded by the lettered points in figure 2(c),
equation (Bl) becomes

bdc - J.

(Bla)

j maybe writtenThe velocity potential at point (X+dx,j

The area a’b’d’c’ may be subdivided into the areas fgkc’, a’egf,
and eb’d’k. The area fgkc’ is the same as the area abed and
the relation of the distances in the denominator is the sane for
corresponding points. The first integral of equation (B2) may there-
fore be written



(B3)

,.

-.

On the other hand, the area b’od’ may be e$pressed as the
area ghk plus the area edd’khg minus the area eb’d’k. The area
ghk is the same as the area bod and the relation of the distances
in the denominator is the same for corresponding point=. The second
integral of equation (B2) may therefore be written

..

-.

.

●



.—

. ,,
886

t’ ‘.

H equation (Bla) is subtracted .fram the sum of eqqations (B3) and (B4) and if expres-
sions that lead to ltiiniteslmals of order higher than the first h dx are neglected, the

2 -:dx .

J

u

-;,*

The first two integrals of equatlori (B5) are aurfaoe integrals over the areas %,1

ad %,zl mpetilvekr. Integration of the third aud fourth integrals tith respect t6 ~ over

a strip of width dx removes one Integral sign and replaces d!? by dx. The width of the
strip in the fifth integral along the ~ direction may be determinedwith the ald of the
followingeketeh of the area dd’k:

wm
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d

1~
I
I
I
I
I
I
I

,\dxz i

L

I
dx 1 \

I \

‘-’2
~-—-—-

1 /
I
I /

I I
I

d~ = 2 (dx-dxz)

=

=

where
()
&
dx ~

i.sthe slope of

/

(B6)

the wing-boundary curve In the

.

vicinity of the point d. Integraticm oi?the fifth integral of

equation (B5) with respect to ~ removes one integral sign and

re~laoa d~ with the fourth member of equation (B6). Equa-
tion (B5) thus becomes

.
.
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If equation (B7) is rewritten in oblique coordinates, equation
results:

(
*T

‘T)d,,d.rfr —*—

(B7)

(6)

(B7a)
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APPENDIX C

.

●

CALCULATION OF PRESSURE COEFFICIENT FOR WING

OF FIGURE 3 BY MEL’HODOF REFERENCE 1

When ~=-CTT=m, equation (5) gives for the velocity potential

on the top surface of the wing shown in figure 3

Now

J
Uw

2Ua
E-

U2(VW)

du

%’=%($?+%’)
Substitution of’ equation (Cl) into equatiion((!2)yields

..

.“

(cl)

(C2)

(C3)
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.

The pressure coefficient on the top wing surface is then

(C4)
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.

(b)

Figure 1. - Fields of integration for equations (1) to (3).
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Y
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X,y
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or +,VW x

(a)

u
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/
<
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4 +/
u -H

+sv~

(b)

Figure 2. - Fields of integration for equations (5) to (7).
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(a)
I?fgure2. - Concluded. Fields of Integration for equations

(5) to (7)0 .-

.

Figure 3. - Boundary Mrnits for equations (9) to (11].
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/
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/

(b)

Figure 4. - Integration boundaries for evaluating velocity
potential in regions influenced by subsonic trailing
edges.
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(c)

u

(d)
Figure 4. - Continued. Integration boundaries for evaluating

velocity potential in regions influenced by subsonic trailing
edges.
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(e)

Iu

A

(f)

Figure 4. - Concluded. Integration boundaries for evaluating
velocity potential in regions influenced. by subsonlo traillng
edges.
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=@gz=
Figure 5. - Notation for swept trapezoidal wing.
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Figure 6. - Variationof x componentof perturbationvelocityin plane of wing near tip
of swept trapezoidalwing.
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.

Figure 8. - Variation of slopes of streamlines in plane of wing
near tip of swept trapezoidal wing.


